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We use spreading dynamics to study the synchronization trang&ionof one-dimensional coupled map
lattices(CML's). Recently, Barongt al. [Phys. Rev. B63, 036226(2001) ] have shown that the ST belongs to
the directed percolatiofDP) universality class for discontinuous CML's. This was confirmed by accurate
numerical simulations for the Bernoulli map by Ahlers and PikovERizys. Rev. Lett88, 254101(2002].
Spreading dynamics confirms such an identification only for random synchronized states. For homogeneous
synchronized states the spreading exponerasd § are different from the DP exponents but their sum equals
the corresponding sum of the DP exponents. Such a relation is typical of models with infinitely many absorbing
states. Moreover, we calculate the spreading exponents for the tent map for which the ST belongs to the
bounded Kardar-Parisi-Zhan®KPZ) universality class. The estimation of spreading exponents for random
synchronized states is consistent with the hyperscaling relation, while it is inconsistent for the homogeneous
ones. Finally, we examine the asymmetric tent map. For small asymmetry the ST remains of the BKPZ type.
However, for large asymmetry a different critical behavior appears, with exponents being relatively close to
those for DP.
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I. INTRODUCTION [9]. Alhers and Pikovsky10] found essentially that a similar
scenario holds for bidirectionally coupled CML's. It was ar-

Recently, synchronization of chaotic systems has receivedued that DP critical behavior might emerge for systems with
considerable attentiofl]. These studies are partially moti- discontinuous local mapg®,10]. It was also suggested that
vated by experimental realizations in lasers, electronic cirsuch behavior might appear for continuous maps with suffi-
cuits, and chemical reactiorf2]. An interesting problem ciently strong nonlinearitieg5].
concerns synchronization in spatially extended systg@hs It is well known that models with a single absorbing state
It turns out that in such systems synchronization can be reexhibit a DP criticality[11]. At first sight one might think
garded as a nonequilibrium phase transitions. The determinghat the synchronized state is unique and that this is the rea-
tion of the universality classes for nonequilibrium phaseson for its relation with DP criticality for discontinuous
transitions is a problem much debated in the literature. Thumaps. Reexamining the model introduced by Ahlers and Pik-
it is natural to ask whether the synchronization transitionovsky[10], we show, however, that there are many synchro-
(ST) can be incorporated into an already known universalitynized states and they differ with respect to the dynamical
class. For certain cellular automata the synchronized state goperties that are detected with the so-called spreading ap-
actually an absorbing state of the dynamics, and the ST iproach[12]. The spreading exponents that we measure for
such a case was found to belong to the directed percolatiorandom synchronized states and a discontinu@esnoulli)
(DP) universality clasg4]. This problem is more subtle for map take DP values. However, the exponents obtained for
continuous chaotic systems such as, e.g., coupled map ldtomogeneous synchronized states take non-DP values. But
tices(CML's) [5]. For CML's a perfect synchronized state is these exponents satisfy a certain scaling relation that also
never reached in finite time, which weakens the analogy wittholds for some models with infinitely many absorbing states
DP. [13]. In addition to that, we measured spreading exponents

The problem of the ST for CML'’s driven by additive spa- for the ST belonging to the BKPZ universality class. Our
tiotemporal noise has been investigated by Bagiral. [6]. results, obtained for the symmetric tent map, together with
They showed that the ST generally yields two different sceprevious estimations of other exponents in this universality
narios according to the values assumed by two dynamicallass, show that the hyperscaling relation is satisfied but only
indicators ruling the transition, namely, the propagation vefor random synchronized states. For homogeneous synchro-
locity of finite perturbations and the so-called transversenized states the spreading exponents do not obey the hyper-
Lyapunov exponent. This exponent should become negativecaling relation. Finally, we examine the asymmetric tent
for synchronization to occur. When both indicators vanish amap. For not too large asymmetry the ST remains of BKPZ
the transition point, the critical behavior should genericallytype. However, for large asymmetry the nature of the ST
be described by the so-called bounded Kardar-Parisi-Zhanchanges and the critical exponents that we measured are rela-
(BKPZ) universality clas§7,8]. When the propagation ve- tively close to that of DP. This shows that the non-BKPZ
locity vanishes while the transverse Lyapunov exponent ibehavior appears even for continuous maps.
negative, the critical behavior should be DP-like. Let us no- In Sec. Il we define the model and briefly describe the
tice that the possibility of a finite propagation velocity with simulation method. The results are presented in Sec. lll and a
negative Lyapunov exponent is very interesting on its owrfinal discussion is given in Sec. IV.
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[l. MODEL AND SIMULATION METHOD synchronization error is nonzero. As we will see, such ob-
servables do possess a correct asymptotic behavior.

y According to general scaling argument<?], we expect
that at criticality(i.e., for y=y,) w(t)~t”, P(t)~t~?, and

Our model is the same as the one examined recently b
Ahlers and Pikovsky(AP) and consists of two coupled

CMLs [10) R2(t) ~t% These relations define the critical exponentss,
u(x,t+1)) (1-y ¥ andz _ » . .
= Note that in general the critical behavior wf(t) ~t7 in
Up(X,t+1) y l-vy

the spreading method might be different from the nonspread-
ing onew(t)~t~? discussed above. Moreover, these expo-

(1+eA)f(uy(x,t+1)) \ - _
, (1) nents obey the following hyperscaling relatipid]:

V(14 ed)fuy(x,t+1))

where Av is the discrete LapIaci_anAv(x)z_v(x—_ 1) nt S+ 0= d_z 3)
—2v(X)+v(x+1). Both space and time are discretized, 2

=1,2,...L andt=0,1, ... .Periodic boundary conditions

are imposedy; o(x+L,t)=uy A(x,t), and similarly to previ- Il RESULTS

ous studies we set the intrachain couplieg 1/3. Varying
the interchain couplingy allows us to study the transition A. Bernoulli map
between synchronized and chaotic phases. Local dynamics is
specified through a nonlinear functiéfu) and several cases
will be discussed below.

We introduce a synchronization errer(x,t)=|u;(x,t)
—Uy(x,t)| and its spatial averaga(t)=(1/L)E>';:1W(x,t).
The time average of(t) in the steady state will be simply
denoted asv. In the chaotic phase, realized for sufficiently
small y<y., one hasw>0, while in the synchronized
phase ¢>1vy.), w=0. Moreover, at criticality, i.e., fory
=v., W(t) is expected to have a power-law decay to zero
w(t)~t~®. In the stationary state, and fgrapproaching the
critical valuey,, one expects that~ (y.— y)”. two choices.

It is well known that spreading dynamics is a very effec- (i) Random synchronized statia this case each pair of
tive method to study phase transitions in models with absorby, 4| variables takes a different random value, itg(x,0)

ing stated12,14. In this method one prepares the model in =u,(x,0)=r(x), where O<r(x)<1 andr(x) varies from
an absorbing state and then one locally sets the activity ang."tq site.

monitors its subsequent evolution. Typical observables in
this method are the number of active siteét), the prob-

ability P(t) that activity survives at least up to tilheand the Let us note that whery is large enough and modél)

average square spread of active sREt). However, as We  oaches a synchronized state, this state is still chaotic. That is
already mentioned, our model never reaches a perfectly SYRhy the random synchronized statés are a much better
chronized state in a finite time. To defit) we have 10 5550ximation of such “natural” synchronized states. Later
introduce a small thresholdand consider a system as “per- j this section we will see that the spreading dynamics con-
fectly” synchronized wherw(t)<p. The estimation of the fms such an observation.

critical value of the interchain coupling. as well as some Having set the model in the synchronized state we initiate
exponents seems t_o be independent of the precise valye Ofactivity by assigning at a randomly chosen skiga new
as long as it remains small. In our calculations we usually,

DT random number either fou,(Xy) or for u,(Xg). Then we
usedp=10"" _ _ monitor the time evolution, measurimg(t). We always used
As for _the other observables, we define them in the fo"the system siz& =2t +1 wheret,, is the maximum simu-
lowing, p-independent way: lation time. In this way the spreading is never affected by
L finite size effects. Moreover, the data were averaged over
N(H =D wix,t)=w(t)L, 10°- 10" independent runs. Final results shown in Figs. 1-3
x=1 are obtained fory=y,=0.2875. Off criticality the data de-

(2)  viate from the power-law behavior in a typical way. Estimat-
ing the asymptotic slope of our data, we conclude that for the
random synchronized state the exponents are in good agree-
ment with very accurately known DP valuesspp

wherex, denotes the site where the activity was set initially. = 0.1595, 7pp=0.3137, andz=1.2652[15]. However, in

Let us notice thalN(t) is directly related to the order param- the case of homogeneous synchronized states, the exponents

eter. Moreover, the weighted average in the definition ofy and & are clearly different and we estimate=0.43(1)

R?(t) allows us to take into account only sites where theand »=0.051).

First, let us consider the case whéfu) is a Bernoulli
map, namelyf(u)=2u(mod 1) and Gsu=<1. Measuringnv

in the steady state and its time dependewge), AP con-
cluded that the synchronization transition in this case takes
place aty= y.,=0.2875(1) and belongs to the DP universal-
ity class.

Our purpose here is to apply the spreading dynamics to
this map. First, we have to set the model in a synchronized
state, i.e., the variables of both chains of CML's must take
the same value. But despite that constraint there is a consid-
erable freedom in doing that. Below we present results for

(i) Homogeneous synchronized state. this caser (x)
=r and is constant for each

R?(t)= 1 W(X,t)(X—Xg)?
w(t) X ’ o
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FIG. 1. The survival probability?(t) for the Bernoulli map at FIG. 3. The average square sprd®at) as a function of time
v=17.=0.2875 for random and homogeneous absorbing states asfar the Bernoulli map aty=y.=0.2875 with randon{solid line)
function of timet. The slopes correspond #=0.1595(DP valug and homogeneouglashed ling absorbing states. The straight dot-
for the upper straight dotted line, and &e- 0.43 for the lower one. ted line has a slope that corresponds to the DP va#.2652.

Let us note that a very similar situation occurs in certain®f R?(t) is described by the same exponent that most likely

models with infinitely many absorbing states, where thesdakes the DP value=1.2652. . o

critical exponents are also found to depend on the choice of FOr models with infinitely many absorbing states it is also

the absorbing statgl3]. Although the spreading exponents knovyn that the sp_rea_ldmg fexponents for so-called natural ab-

are nonuniversal in this class of models, they obey the folSOrbing states coincide with the DP exponents. Briefly, the

lowing relation: natural absorbing states are the ones that are reached by the
dynamics of a given model. Since the spreading exponents

n+ 6= 71pp+ Spp. (4)  for random synchronized states coincide with DP exponents,

one obtains that such states are very close to the natural

synchronized states. On the other hand, as expected, the dy-

It turns out that the estimated exponents for homogeneoussmics of homogeneous synchronized stéit¢ss much dif-
synchronized states also obey this relation within an estizarent from the natural and random ones.

mated error. From Ed4) and the hyperscaling relatid8) it The main conclusion which follows from the above cal-

follows (d=1 in our casgthat the exponent must be con- ¢ jations is that synchronization should be considered as a
stant and thus independent of the choice of the absorbingansition in a model with multiple absorbing states rather
state. Indeed, in Fig. 3 one can see that for both the randogp 5, 5 single one. Except for non-DP values;and é it has

and homogeneous absorbing states the asymptotic increasgsentially no other consequences in the one-dimensional
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FIG. 2. The averaged differengg(t) as a function of time for FIG. 4. The averaged differenegt) as a function of time for

the Bernoulli map aty=y.=0.2875 and for random and homoge- the symmetric tent map at=y,=0.176 14 and for random absorb-
neous absorbing states. The upper straight dotted line has a slop®y states. The least-square fit to the last decade data gives

that corresponds to the DP valug=0.3134, and for the lower —0.535). Thedotted straight line has a slope that corresponds to
straight line»=0.05. n=—0.5.
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FIG. 5. The average square spréidt) as a function of time FIG. 7. The plot of successive iterations of the asymmetric tent

for the symmetric tent map at=y.=0.176 14 and random absorb- map (5) for a=1.01. Most of the time is spent on the gradually

ing states. The straight dotted line has a slope that corresponds iacreasing (laminap part, occasionally interrupted by irregular
the KPZ valuez=1.3333. jumps.

case. For example, all steady-state exponents keep the D¥other interesting feature reported by AP is a different be-
values. However, the situation might be different in higher-havior of the transverse Lyapunov expongnt For the tent
dimensional models with infinitely many absorbing states. Inmap\; vanishes exactly af., while for the Bernoulli map
particular, there are some analytical and numerical indicait vanishes inside a chaotic phase. In this case the correct
tions that in such a case a non-DP criticality might appeaprder parameter is the finite amplitude propagation velocity
[16]. [9,17].

For the tent map we also performed the spreading dynam-
ics calculations. For the random synchronized states our re-
sults for the time dependence wf{t) are shown in Fig. 4.
The second map examined by AP is the symmetric tenThe asymptotic decay ofi(t) is described by the exponent
map defined asf(u)=1-2|u—1/2 (0<u=<1). In this »=-0.53(5)(note the minus signAs for the estimation of
case they found that the synchronization transition belongs t@, our results strongly suggest that in this case0. Indeed,
the BKPZ universality class and occurs ay=7y. inthe examined range of the threshpldve observed that all
=0.176 141). A qualitative difference between the critical runs survived until the maximum measured time= 10"

behavior in the case of Bernoulli and tent maps is attributedviost likely such a value o8 is related to the fact that in this
to the strong nonlinearitgi.e., discontinuity of the first map.

B. Symmetric tent map
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100 FIG. 8. The steady-state synchronization emwas a function of

FIG. 6. The averaged differenegt) as a function of time for y for the asymmetric tent mapaE1.1). The measurement was
the symmetric tent map with homogeneous absorbing statesnade duringt=10° steps after % 10" steps of relaxation. In the
Calculations were done foffrom top y=0.17, 0.172, 0.174, range (0.2& y<1y,=0.2288)w is well fitted by a power-law func-
0.175, 0.176 14(critical), 0.178, 0.18, 0.185, and 0.19. For tion a(y.—y)?, where 8=1.5. In the logarithmic scalginsed
v<0.176 14w(t) asymptotically increases linearly in time while it these data are better fitted wijg= 1.3 (dotted ling but a slight
decreases faster than a power law §0¢0.176 14. bending toward a greater value gfcan also be seen.
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FIG. 9. The time dependence wffor the asymmetric tent map
(a=1.1) andy equal to(from top) 0.228, 0.2285, 0.228&ritical),
and 0.229. Calculations were done for=3x10°. The dotted
straight line has a slope correspondingfie-1.16.

FIG. 11. The time dependencewffor the asymmetric tent map
(a=1.02) andy equal to(from top 0.1707, 0.1709, 0.170 95,
0.1710, and 0.1712. Calculations were done lfer5x 10*. We
identify the central curve as critical.

case also the Lyapunov exponent vanishes at the critical

point. From the behavior oR2(t) (Fig. 5 we estimatez ~ —0-176 14)w(t) seems to remain constant in tirtfeig. 6),
=1.30(5), which is in good agreement with the expecteda”d that impliesy=0.0. Moreover, we estimate in this case
KPZ valuez=3 [8,18]. 6=0.0(1) andz=0.85(10). Such values of spreading expo-

The hyperscaling relation provides a constraint on the exents do not satisfy the hyperscaling relati@h The reason
ponentsy, 8, ®, andz Since for the BKPZ universality for such a disagreement is not clear to us. Let us note, how-
classzis a simple numbe4/3), it is tempting to assume that ever, that for hyperscaling to hold, a number of scaling as-
other exponents are also simple numbers. Thus we migtsumptions must be satisfigd4]. One cannot exclude that
speculate that in this model the exact valuezpfs —0.5. homogeneous absorbing states are “too unnatural” for these
Then, from the hyperscaling relatidB) together withd=0 assumptions to hold. Nevertheless, spreading dynamics in
andz=3% we obtain®@={=1.165. .. . Such a value might this case most likely correctly locates the critical pdifig.
be compared with numerical estimations of this exponent§). Further investigation of this problem is left for the future.
which range from 1.@) [8,18] to 1.263) [10]. Let us also
note that our estimation of the exponentsand § is consis- C. Asymmetric tent map
tent with the estimation based on the numerical solution of a

. . : . In this subsection we examine the asymmetric tent ma
certain Langevin equation that belongs to the same univery y P

. efined as
sality clasg19].
We also performed spreading dynamics simulations with
homogeneous synchronized states. At criticalityy ( 035 ' ' ' '
0.0035 : :
x* L=10* =
0.003 i 165 =
0.0025 * x - 5
* g 2
0.002 *x . g
3 *
0.0015 * x _
0.001 | * % . j
0.0005 I - 1 35 - : s :
%%g 2 2.5 3 3.5 4 45
0 . . log; (1)
0.166 0.168 0.17 0.172 _ . .
¥ FIG. 12. The averaged differeneg(t) as a function of time

for the asymmetric tent map and for random absorbing states. Cal-
FIG. 10. The steady-state synchronization emwaas a function  culations were done foa=1.02 with y=y.=0.170 95 and fola

of y for the asymmetric tent ma@E 1.02). The measurement was =1.01 with y=1y,=0.136 95. The dotted straight lines have a
made during = 10" steps after X 10* steps of relaxation. slope that corresponds te=0.15 (uppe) and »=0.22 (lower).
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FIG. 13. The survival probability(t) for the asymmetric tent FIG. 15. The steady-state synchronization emwaas a function

map with random absorbing states. Calculations were dona for Of y for the asymmetric tent mag@é 1.01). The measurement was
=1.02 with y=v,=0.170 95 and fora=1.01 with y=1, made during=10° steps after % 10* steps of relaxation.
=0.136 95. The dotted straight lines have a slope that corresponds

to ©®=0.27 (uppe) and © = 0.21 (lower). some numerical difficulties already farclose to 1. Below

we present the results of our calculations &+ 1.1, 1.02,
au for O=<u<1/a, and 1.01.

Waa-wia-1) forra=u=s,

1l.a=11

and 1<a=2. Fora=2 this is the symmetric tent map. Let ~ Whena is not too close to 1, modéll) remains in the
us notice that in the limia— 1, the slope of the second part BKPZ universality class. In particular, fa=1.1 the esti-
of this map diverges. Moreover, the first part approaches thenated exponentg=1.4(2) (Fig. 8 and® =1.16(10) (Fig.
identity function. Fora only slightly greater than 1 it leads to 9) are in good agreement with other estimations for this uni-
an interesting intermittencylike behavior that is shown inversality class.
Fig. 7. A simple argument show that in the lingit—>1 the
average length of the laminar part diverges asr~1/(a 2. a=1.02
fl)' Indeed, approximately equals th? ﬁumber of itera- However, fora close to 1 the nature of the transition
tions needed for the map to reach unity; namely, we have : o

;. . Lo . thanges. From the measurementsvafig. 10 and its time
upa™=1, whereuy is the initial value. Thus we obtain= dependencev(t) (Fig. 11), we estimate that in this ca
—In(ug)/In(a)~1/(a—1). The appearance of a characteris- P 9. >, %

N . . =0.17095 and® =0.255). Using the spreading dynamics
tic time 7 that diverges fora—1, as we will see, causes . . o
calculations for the random synchronized states at the critical

p point we estimatgFigs. 12—14 »=0.153), §=0.272),
ST 3 . . . .
5 -
45 -3.1
- 4r
S 3.2
& 35T
s 3t =
en e 33
< a5t 2
2r g 34
15
35
1 -
0.5 L L . L . . 3.6
1 1.5 2 2.5 3 3.5 4 45
logo(t) 37 . . . .
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FIG. 14. The average square spré&¥qt) as a function of time log,(t)
t for the asymmetric tent map and random absorbing states. Calcu-
lations were done foma=1.02, y=vy.=0.170 95(solid line) and FIG. 16. The time dependence w{t) for the asymmetric tent
a=1.01, y=y.=0.136 95(dashed ling The straight dotted lines map @=1.01) andy equal to(from top) 0.1368, 0.136 85, 0.1369,
have slopes that correspond to the DP and KPZ values of 0.136 95, and 0.137. Calculations were donelfer5x 10,
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TABLE I. Critical parameters for the symmetric and asymmetric tent mapsaE&@ the model belongs to the BKPZ universality class.
The last column shows how much the critical exponents deviate from the hyperscaling rédation

a Ye (C] 7 ) B z ntd 2[2-0—n—4

2

(BKPZ) 0.176 14 1.263) —0.53(5) 0.01) 1.505) 1.305) 0.070.11)

1.1 0.2288 1.1€.0) 1.4(2) 1.305)

1.02 0.17095 0.25) 0.153) 0.272) 1.323) 0.42 0.010.1)

1.01 0.136 95 0.1®) 0.222) 0.21(2) 1.255) 0.43 0.040.08

DP 0.1595 0.3137 0.1595 0.2765 1.2652 0.4732 0
andz=1.323). All of the exponents except are far from IV. DISCUSSION
the BKPZ values. In this paper we used a spreading dynamics technique to

examine the dynamical properties of CML models undergo-
3. &=1.01 ing a synchronization transition. Our main results show that
From the measurementswf(Fig. 15 and its time depen- (i) the synchronized state is not unique &figl non-BKPZ
dencew(t) (Fig. 16, we estimate that in this casg,  critical behavior might appear for continuous maps. The lat-
=0.136 95 andd =0.152). As for thea=1.02 results, our ter result was already predicted by Bareial. [6]. One of
results forw close to the critical point are not sufficiently the open questions that we leave for the future is why, for
accurate to determingd. Using the spreading dynamics cal- sufficiently asymmetric but continuous maps, the linear
culations for the random synchronized states at the critica@nalysis, which leads to the relation with the BKPZ model,
point we estimate(Figs. 12—14 7=0.222),5=0.21(2), breaks down. Some aspects of this problem were already
andz=1.255). Again, the exponents, exceptare far from addressed in the literature as “stable chad$;9]. For
the BKPZ values. Howevef) andz are consistent with the strongly asymmetric maps theleterministig noise is very
DP value. Moreover, the sum+ 6=0.43 is also quite close large and this seems to be the only factor that might change
to the DP valug0.4733. Thus, it is in our opinion likely that the universality class. It is known that, depending on how the
in this case the model belongs to the DP universality clas§0ise scales with the order parameter, Langevin-type models,
but the random synchronized states are not natural synchréthich presumably describe our model at criticality and at a
nized states and that is Why and d Separate|y do not take CoarSEd'grained Ievel, mlght exhibit either DP or BKPZ criti-
their DP values. Let us note that for the Bernoulli map, ex-cal behaviof20]. In particular, when the amplitude of noise
amined in Sec. Il A, the random synchronized states aréscales linearly with the order parameter the model exhibits
probab|y a good approximation of the natural Synchronizedhe BKPZ critical behavior but the DP one for square root
states, since the spreading exponents obtained coincide wig¢aling. Thus, the problem is to explain how a qualitatively
the DP values. Most likely, foa=1.01 natural synchronized different scaling of the noise in a Langevin-type model could
states include some sort of correlations that are clearly abseffnerge due to more quantitative changesisymmetryin a
in our purely random construction of such states. coupled CML system. It is also tempting to expect that
At first sight it seems that by takingeven closer to 1 we BKPZ and DP critical behaviors meet for a certain asymme-
should retrieve DP exponents with a better accuracy. Howtry value a; (1.1<a,<1.01) at a different multicritical
ever, as can be seen in Fig. 12 or Fig. 13,d@etting closer  Point. Our estimation 0® for a=1.02 significantly deviates
and closer to 1, the critical scaling sets in only after a longeffom both DP and BKPZ values, which might be an indica-
and longer time. Thus, examining, for exampée=1.001  tion of such a critical point.
seems to be beyond the reach of our present computational
resources. In our opinion, the increasing time needed to
reach the critical scaling might be related to the characteristic
time scaler that appears for a single map, as was already This work was partially supported by the Swiss National
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