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Dynamical properties of the synchronization transition
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We use spreading dynamics to study the synchronization transition~ST! of one-dimensional coupled map
lattices~CML’s!. Recently, Baroniet al. @Phys. Rev. E63, 036226~2001!# have shown that the ST belongs to
the directed percolation~DP! universality class for discontinuous CML’s. This was confirmed by accurate
numerical simulations for the Bernoulli map by Ahlers and Pikovsky@Phys. Rev. Lett.88, 254101~2002!#.
Spreading dynamics confirms such an identification only for random synchronized states. For homogeneous
synchronized states the spreading exponentsh andd are different from the DP exponents but their sum equals
the corresponding sum of the DP exponents. Such a relation is typical of models with infinitely many absorbing
states. Moreover, we calculate the spreading exponents for the tent map for which the ST belongs to the
bounded Kardar-Parisi-Zhang~BKPZ! universality class. The estimation of spreading exponents for random
synchronized states is consistent with the hyperscaling relation, while it is inconsistent for the homogeneous
ones. Finally, we examine the asymmetric tent map. For small asymmetry the ST remains of the BKPZ type.
However, for large asymmetry a different critical behavior appears, with exponents being relatively close to
those for DP.

DOI: 10.1103/PhysRevE.67.056204 PACS number~s!: 05.45.2a, 05.40.Ca
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I. INTRODUCTION

Recently, synchronization of chaotic systems has rece
considerable attention@1#. These studies are partially mot
vated by experimental realizations in lasers, electronic
cuits, and chemical reactions@2#. An interesting problem
concerns synchronization in spatially extended systems@3#.
It turns out that in such systems synchronization can be
garded as a nonequilibrium phase transitions. The determ
tion of the universality classes for nonequilibrium pha
transitions is a problem much debated in the literature. T
it is natural to ask whether the synchronization transit
~ST! can be incorporated into an already known universa
class. For certain cellular automata the synchronized sta
actually an absorbing state of the dynamics, and the ST
such a case was found to belong to the directed percola
~DP! universality class@4#. This problem is more subtle fo
continuous chaotic systems such as, e.g., coupled map
tices~CML’s! @5#. For CML’s a perfect synchronized state
never reached in finite time, which weakens the analogy w
DP.

The problem of the ST for CML’s driven by additive sp
tiotemporal noise has been investigated by Baroniet al. @6#.
They showed that the ST generally yields two different s
narios according to the values assumed by two dynam
indicators ruling the transition, namely, the propagation
locity of finite perturbations and the so-called transve
Lyapunov exponent. This exponent should become nega
for synchronization to occur. When both indicators vanish
the transition point, the critical behavior should generica
be described by the so-called bounded Kardar-Parisi-Zh
~BKPZ! universality class@7,8#. When the propagation ve
locity vanishes while the transverse Lyapunov exponen
negative, the critical behavior should be DP-like. Let us n
tice that the possibility of a finite propagation velocity wi
negative Lyapunov exponent is very interesting on its o
1063-651X/2003/67~5!/056204~8!/$20.00 67 0562
d

r-

e-
a-

s
n
y
is

in
on

at-

h

-
al
-
e
ve
t

ng

is
-

n

@9#. Alhers and Pikovsky@10# found essentially that a simila
scenario holds for bidirectionally coupled CML’s. It was a
gued that DP critical behavior might emerge for systems w
discontinuous local maps@6,10#. It was also suggested tha
such behavior might appear for continuous maps with su
ciently strong nonlinearities@6#.

It is well known that models with a single absorbing sta
exhibit a DP criticality@11#. At first sight one might think
that the synchronized state is unique and that this is the
son for its relation with DP criticality for discontinuou
maps. Reexamining the model introduced by Ahlers and P
ovsky @10#, we show, however, that there are many synch
nized states and they differ with respect to the dynam
properties that are detected with the so-called spreading
proach@12#. The spreading exponents that we measure
random synchronized states and a discontinuous~Bernoulli!
map take DP values. However, the exponents obtained
homogeneous synchronized states take non-DP values.
these exponents satisfy a certain scaling relation that
holds for some models with infinitely many absorbing sta
@13#. In addition to that, we measured spreading expone
for the ST belonging to the BKPZ universality class. O
results, obtained for the symmetric tent map, together w
previous estimations of other exponents in this universa
class, show that the hyperscaling relation is satisfied but o
for random synchronized states. For homogeneous sync
nized states the spreading exponents do not obey the hy
scaling relation. Finally, we examine the asymmetric te
map. For not too large asymmetry the ST remains of BK
type. However, for large asymmetry the nature of the
changes and the critical exponents that we measured are
tively close to that of DP. This shows that the non-BKP
behavior appears even for continuous maps.

In Sec. II we define the model and briefly describe t
simulation method. The results are presented in Sec. III an
final discussion is given in Sec. IV.
©2003 The American Physical Society04-1
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II. MODEL AND SIMULATION METHOD

Our model is the same as the one examined recently
Ahlers and Pikovsky~AP! and consists of two couple
CML’s @10#:

S u1~x,t11!

u2~x,t11!
D 5S 12g g

g 12g D
3S ~11eD! f „u1~x,t11!…

~11eD! f „u2~x,t11!…
D , ~1!

where Dv is the discrete LaplacianDv(x)5v(x21)
22v(x)1v(x11). Both space and time are discretized,x
51,2, . . . ,L and t50,1, . . . . Periodic boundary condition
are imposed,u1,2(x1L,t)5u1,2(x,t), and similarly to previ-
ous studies we set the intrachain couplinge51/3. Varying
the interchain couplingg allows us to study the transitio
between synchronized and chaotic phases. Local dynami
specified through a nonlinear functionf (u) and several case
will be discussed below.

We introduce a synchronization errorw(x,t)5uu1(x,t)
2u2(x,t)u and its spatial averagew(t)5(1/L)(x51

L w(x,t).
The time average ofw(t) in the steady state will be simpl
denoted asw. In the chaotic phase, realized for sufficient
small g,gc , one hasw.0, while in the synchronized
phase (g.gc), w50. Moreover, at criticality, i.e., forg
5gc , w(t) is expected to have a power-law decay to ze
w(t);t2Q. In the stationary state, and forg approaching the
critical valuegc , one expects thatw;(gc2g)b.

It is well known that spreading dynamics is a very effe
tive method to study phase transitions in models with abso
ing states@12,14#. In this method one prepares the model
an absorbing state and then one locally sets the activity
monitors its subsequent evolution. Typical observables
this method are the number of active sitesN(t), the prob-
ability P(t) that activity survives at least up to timet, and the
average square spread of active sitesR2(t). However, as we
already mentioned, our model never reaches a perfectly
chronized state in a finite time. To defineP(t) we have to
introduce a small thresholdp and consider a system as ‘‘pe
fectly’’ synchronized whenw(t),p. The estimation of the
critical value of the interchain couplinggc as well as some
exponents seems to be independent of the precise valuep,
as long as it remains small. In our calculations we usua
usedp510210.

As for the other observables, we define them in the f
lowing, p-independent way:

N~ t !5 (
x51

L

w~x,t !5w~ t !L,

~2!

R2~ t !5
1

w~ t ! (
x

w~x,t !~x2x0!2,

wherex0 denotes the site where the activity was set initia
Let us notice thatN(t) is directly related to the order param
eter. Moreover, the weighted average in the definition
R2(t) allows us to take into account only sites where t
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synchronization error is nonzero. As we will see, such o
servables do possess a correct asymptotic behavior.

According to general scaling arguments@12#, we expect
that at criticality~i.e., for g5gc) w(t);th, P(t);t2d, and
R2(t);tz. These relations define the critical exponentsh, d,
andz.

Note that in general the critical behavior ofw(t);th in
the spreading method might be different from the nonspre
ing onew(t);t2Q discussed above. Moreover, these exp
nents obey the following hyperscaling relation@14#:

h1d1Q5
dz

2
. ~3!

III. RESULTS

A. Bernoulli map

First, let us consider the case whenf (u) is a Bernoulli
map, namely,f (u)52u(mod 1) and 0<u<1. Measuringw
in the steady state and its time dependencew(t), AP con-
cluded that the synchronization transition in this case ta
place atg5gc50.2875(1) and belongs to the DP universa
ity class.

Our purpose here is to apply the spreading dynamics
this map. First, we have to set the model in a synchroni
state, i.e., the variables of both chains of CML’s must ta
the same value. But despite that constraint there is a con
erable freedom in doing that. Below we present results
two choices.

(i) Random synchronized state.In this case each pair o
local variables takes a different random value, i.e.,u1(x,0)
5u2(x,0)5r (x), where 0<r (x)<1 and r (x) varies from
site to site.

(ii) Homogeneous synchronized state.In this caser (x)
5r and is constant for eachx.

Let us note that wheng is large enough and model~1!
reaches a synchronized state, this state is still chaotic. Th
why the random synchronized states~i! are a much better
approximation of such ‘‘natural’’ synchronized states. La
in this section we will see that the spreading dynamics c
firms such an observation.

Having set the model in the synchronized state we initi
activity by assigning at a randomly chosen sitex0 a new
random number either foru1(x0) or for u2(x0). Then we
monitor the time evolution, measuringw(t). We always used
the system sizeL52tm11 wheretm is the maximum simu-
lation time. In this way the spreading is never affected
finite size effects. Moreover, the data were averaged o
1032104 independent runs. Final results shown in Figs. 1
are obtained forg5gc50.2875. Off criticality the data de
viate from the power-law behavior in a typical way. Estima
ing the asymptotic slope of our data, we conclude that for
random synchronized state the exponents are in good ag
ment with very accurately known DP values:dDP
50.1595,hDP50.3137, andz51.2652 @15#. However, in
the case of homogeneous synchronized states, the expo
h and d are clearly different and we estimated50.43(1)
andh50.05(1).
4-2
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Let us note that a very similar situation occurs in cert
models with infinitely many absorbing states, where th
critical exponents are also found to depend on the choic
the absorbing state@13#. Although the spreading exponen
are nonuniversal in this class of models, they obey the
lowing relation:

h1d5hDP1dDP . ~4!

It turns out that the estimated exponents for homogene
synchronized states also obey this relation within an e
mated error. From Eq.~4! and the hyperscaling relation~3! it
follows (d51 in our case! that the exponentz must be con-
stant and thus independent of the choice of the absor
state. Indeed, in Fig. 3 one can see that for both the ran
and homogeneous absorbing states the asymptotic incr

FIG. 1. The survival probabilityP(t) for the Bernoulli map at
g5gc50.2875 for random and homogeneous absorbing states
function of timet. The slopes correspond tod50.1595~DP value!
for the upper straight dotted line, and tod50.43 for the lower one.

FIG. 2. The averaged differencew(t) as a function of timet for
the Bernoulli map atg5gc50.2875 and for random and homog
neous absorbing states. The upper straight dotted line has a
that corresponds to the DP valueh50.3134, and for the lower
straight lineh50.05.
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of R2(t) is described by the same exponent that most lik
takes the DP valuez51.2652.

For models with infinitely many absorbing states it is al
known that the spreading exponents for so-called natural
sorbing states coincide with the DP exponents. Briefly,
natural absorbing states are the ones that are reached b
dynamics of a given model. Since the spreading expone
for random synchronized states coincide with DP expone
one obtains that such states are very close to the na
synchronized states. On the other hand, as expected, th
namics of homogeneous synchronized states~ii ! is much dif-
ferent from the natural and random ones.

The main conclusion which follows from the above ca
culations is that synchronization should be considered a
transition in a model with multiple absorbing states rath
than a single one. Except for non-DP values ofh andd it has
essentially no other consequences in the one-dimensi

s a

pe

FIG. 3. The average square spreadR2(t) as a function of timet
for the Bernoulli map atg5gc50.2875 with random~solid line!
and homogeneous~dashed line! absorbing states. The straight do
ted line has a slope that corresponds to the DP valuez51.2652.

FIG. 4. The averaged differencew(t) as a function of timet for
the symmetric tent map atg5gc50.176 14 and for random absorb
ing states. The least-square fit to the last decade data givesh5
20.53(5). Thedotted straight line has a slope that corresponds
h520.5.
4-3
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case. For example, all steady-state exponents keep the
values. However, the situation might be different in high
dimensional models with infinitely many absorbing states
particular, there are some analytical and numerical ind
tions that in such a case a non-DP criticality might app
@16#.

B. Symmetric tent map

The second map examined by AP is the symmetric t
map defined asf (u)5122uu21/2u (0<u<1). In this
case they found that the synchronization transition belong
the BKPZ universality class and occurs atg5gc
50.176 14(1). A qualitative difference between the critic
behavior in the case of Bernoulli and tent maps is attribu
to the strong nonlinearity~i.e., discontinuity! of the first map.

FIG. 5. The average square spreadR2(t) as a function of timet
for the symmetric tent map atg5gc50.176 14 and random absorb
ing states. The straight dotted line has a slope that correspon
the KPZ valuez51.3333.

FIG. 6. The averaged differencew(t) as a function of timet for
the symmetric tent map with homogeneous absorbing sta
Calculations were done for~from top! g50.17, 0.172, 0.174,
0.175, 0.176 14~critical!, 0.178, 0.18, 0.185, and 0.19. Fo
g,0.176 14w(t) asymptotically increases linearly in time while
decreases faster than a power law forg.0.176 14.
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Another interesting feature reported by AP is a different b
havior of the transverse Lyapunov exponentl' . For the tent
mapl' vanishes exactly atgc , while for the Bernoulli map
it vanishes inside a chaotic phase. In this case the cor
order parameter is the finite amplitude propagation veloc
@9,17#.

For the tent map we also performed the spreading dyn
ics calculations. For the random synchronized states our
sults for the time dependence ofw(t) are shown in Fig. 4.
The asymptotic decay ofw(t) is described by the exponen
h520.53(5) ~note the minus sign!. As for the estimation of
d, our results strongly suggest that in this cased50. Indeed,
in the examined range of the thresholdp we observed that al
runs survived until the maximum measured timetm5104.
Most likely such a value ofd is related to the fact that in this

to

s.

FIG. 7. The plot of successive iterations of the asymmetric t
map ~5! for a51.01. Most of the time is spent on the gradua
increasing ~laminar! part, occasionally interrupted by irregula
jumps.

FIG. 8. The steady-state synchronization errorw as a function of
g for the asymmetric tent map (a51.1). The measurement wa
made duringt5105 steps after 53104 steps of relaxation. In the
range (0.22<g<gc50.2288)w is well fitted by a power-law func-
tion a(gc2g)b, where b51.5. In the logarithmic scale~inset!
these data are better fitted withb51.3 ~dotted line! but a slight
bending toward a greater value ofb can also be seen.
4-4
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case also the Lyapunov exponent vanishes at the cri
point. From the behavior ofR2(t) ~Fig. 5! we estimatez
51.30(5), which is in good agreement with the expect
KPZ valuez5 4

3 @8,18#.
The hyperscaling relation provides a constraint on the

ponentsh, d, Q, and z. Since for the BKPZ universality
classz is a simple number~4/3!, it is tempting to assume tha
other exponents are also simple numbers. Thus we m
speculate that in this model the exact value ofh is 20.5.
Then, from the hyperscaling relation~3! together withd50
andz5 4

3 we obtainQ5 7
6 51.166 . . . . Such a value might

be compared with numerical estimations of this expone
which range from 1.1~1! @8,18# to 1.26~3! @10#. Let us also
note that our estimation of the exponentsh andd is consis-
tent with the estimation based on the numerical solution o
certain Langevin equation that belongs to the same uni
sality class@19#.

We also performed spreading dynamics simulations w
homogeneous synchronized states. At criticalityg

FIG. 9. The time dependence ofw for the asymmetric tent map
(a51.1) andg equal to~from top! 0.228, 0.2285, 0.2288~critical!,
and 0.229. Calculations were done forL533105. The dotted
straight line has a slope corresponding toQ51.16.

FIG. 10. The steady-state synchronization errorw as a function
of g for the asymmetric tent map (a51.02). The measurement wa
made duringt5105 steps after 53104 steps of relaxation.
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50.176 14)w(t) seems to remain constant in time~Fig. 6!,
and that impliesh50.0. Moreover, we estimate in this cas
d50.0(1) andz50.85(10). Such values of spreading exp
nents do not satisfy the hyperscaling relation~3!. The reason
for such a disagreement is not clear to us. Let us note, h
ever, that for hyperscaling to hold, a number of scaling
sumptions must be satisfied@14#. One cannot exclude tha
homogeneous absorbing states are ‘‘too unnatural’’ for th
assumptions to hold. Nevertheless, spreading dynamic
this case most likely correctly locates the critical point~Fig.
6!. Further investigation of this problem is left for the futur

C. Asymmetric tent map

In this subsection we examine the asymmetric tent m
defined as

FIG. 11. The time dependence ofw for the asymmetric tent map
(a51.02) andg equal to ~from top! 0.1707, 0.1709, 0.170 95
0.1710, and 0.1712. Calculations were done forL553104. We
identify the central curve as critical.

FIG. 12. The averaged differencew(t) as a function of timet
for the asymmetric tent map and for random absorbing states.
culations were done fora51.02 with g5gc50.170 95 and fora
51.01 with g5gc50.136 95. The dotted straight lines have
slope that corresponds toh50.15 ~upper! andh50.22 ~lower!.
4-5
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M. DROZ AND A. LIPOWSKI PHYSICAL REVIEW E67, 056204 ~2003!
f ~u!5H au for 0<u,1/a,

a~12u!/~a21! for 1/a<u<1,
~5!

and 1,a<2. For a52 this is the symmetric tent map. Le
us notice that in the limita→1, the slope of the second pa
of this map diverges. Moreover, the first part approaches
identity function. Fora only slightly greater than 1 it leads t
an interesting intermittencylike behavior that is shown
Fig. 7. A simple argument show that in the limita→1 the
average length of the laminar partt diverges ast;1/(a
21). Indeed, approximatelyt equals the number of itera
tions needed for the map to reach unity; namely, we h
u0at51, whereu0 is the initial value. Thus we obtaint5
2 ln(u0)/ln(a);1/(a21). The appearance of a character
tic time t that diverges fora→1, as we will see, cause

FIG. 13. The survival probabilityP(t) for the asymmetric tent
map with random absorbing states. Calculations were done fa
51.02 with g5gc50.170 95 and for a51.01 with g5gc

50.136 95. The dotted straight lines have a slope that corresp
to Q50.27 ~upper! andQ50.21 ~lower!.

FIG. 14. The average square spreadR2(t) as a function of time
t for the asymmetric tent map and random absorbing states. Ca
lations were done fora51.02,g5gc50.170 95~solid line! and
a51.01,g5gc50.136 95~dashed line!. The straight dotted lines
have slopes that correspond to the DP and KPZ values ofz.
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some numerical difficulties already fora close to 1. Below
we present the results of our calculations fora51.1, 1.02,
and 1.01.

1. aÄ1.1

When a is not too close to 1, model~1! remains in the
BKPZ universality class. In particular, fora51.1 the esti-
mated exponentsb51.4(2) ~Fig. 8! andQ51.16(10) ~Fig.
9! are in good agreement with other estimations for this u
versality class.

2. aÄ1.02

However, for a close to 1 the nature of the transitio
changes. From the measurements ofw ~Fig. 10! and its time
dependencew(t) ~Fig. 11!, we estimate that in this casegc
50.170 95 andQ50.25(5). Using the spreading dynamic
calculations for the random synchronized states at the crit
point we estimate~Figs. 12–14! h50.15(3), d50.27(2),

ds

u-

FIG. 15. The steady-state synchronization errorw as a function
of g for the asymmetric tent map (a51.01). The measurement wa
made duringt5105 steps after 53104 steps of relaxation.

FIG. 16. The time dependence ofw(t) for the asymmetric tent
map (a51.01) andg equal to~from top! 0.1368, 0.136 85, 0.1369
0.136 95, and 0.137. Calculations were done forL553104.
4-6
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TABLE I. Critical parameters for the symmetric and asymmetric tent maps. Fora52 the model belongs to the BKPZ universality clas
The last column shows how much the critical exponents deviate from the hyperscaling relation~3!.

a gc Q h d b z h1d z/22Q2h2d

2
~BKPZ! 0.176 14 1.26~3! 20.53(5) 0.0~1! 1.50~5! 1.30~5! 0.07~0.11!
1.1 0.2288 1.16~10! 1.4~2! 1.30~5!

1.02 0.170 95 0.25~5! 0.15~3! 0.27~2! 1.32~3! 0.42 0.01~0.11!
1.01 0.136 95 0.15~2! 0.22~2! 0.21~2! 1.25~5! 0.43 0.04~0.08!
DP 0.1595 0.3137 0.1595 0.2765 1.2652 0.4732 0
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and z51.32(3). All of the exponents exceptz are far from
the BKPZ values.

3. aÄ1.01

From the measurements ofw ~Fig. 15! and its time depen-
dence w(t) ~Fig. 16!, we estimate that in this casegc
50.136 95 andQ50.15(2). As for thea51.02 results, our
results forw close to the critical point are not sufficientl
accurate to determineb. Using the spreading dynamics ca
culations for the random synchronized states at the crit
point we estimate~Figs. 12–14! h50.22(2),d50.21(2),
andz51.25(5). Again, the exponents, exceptz, are far from
the BKPZ values. However,Q andz are consistent with the
DP value. Moreover, the sumh1d50.43 is also quite close
to the DP value~0.4732!. Thus, it is in our opinion likely that
in this case the model belongs to the DP universality cl
but the random synchronized states are not natural sync
nized states and that is whyh andd separately do not take
their DP values. Let us note that for the Bernoulli map, e
amined in Sec. III A, the random synchronized states
probably a good approximation of the natural synchroniz
states, since the spreading exponents obtained coincide
the DP values. Most likely, fora51.01 natural synchronized
states include some sort of correlations that are clearly ab
in our purely random construction of such states.

At first sight it seems that by takinga even closer to 1 we
should retrieve DP exponents with a better accuracy. H
ever, as can be seen in Fig. 12 or Fig. 13, fora getting closer
and closer to 1, the critical scaling sets in only after a lon
and longer time. Thus, examining, for example,a51.001
seems to be beyond the reach of our present computat
resources. In our opinion, the increasing time needed
reach the critical scaling might be related to the character
time scalet that appears for a single map, as was alrea
discussed at the beginning of this section.

Our numerical results are summarized in Table I.
S
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IV. DISCUSSION

In this paper we used a spreading dynamics techniqu
examine the dynamical properties of CML models under
ing a synchronization transition. Our main results show t
~i! the synchronized state is not unique and~ii ! non-BKPZ
critical behavior might appear for continuous maps. The
ter result was already predicted by Baroniet al. @6#. One of
the open questions that we leave for the future is why,
sufficiently asymmetric but continuous maps, the line
analysis, which leads to the relation with the BKPZ mod
breaks down. Some aspects of this problem were alre
addressed in the literature as ‘‘stable chaos’’@6,9#. For
strongly asymmetric maps the~deterministic! noise is very
large and this seems to be the only factor that might cha
the universality class. It is known that, depending on how
noise scales with the order parameter, Langevin-type mod
which presumably describe our model at criticality and a
coarsed-grained level, might exhibit either DP or BKPZ cri
cal behavior@20#. In particular, when the amplitude of nois
scales linearly with the order parameter the model exhi
the BKPZ critical behavior but the DP one for square ro
scaling. Thus, the problem is to explain how a qualitative
different scaling of the noise in a Langevin-type model cou
emerge due to more quantitative changes~in asymmetry! in a
coupled CML system. It is also tempting to expect th
BKPZ and DP critical behaviors meet for a certain asymm
try value ac (1.1,ac,1.01) at a different multicritical
point. Our estimation ofQ for a51.02 significantly deviates
from both DP and BKPZ values, which might be an indic
tion of such a critical point.
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